


# **Engineering Products Introduction**










# **TIM Brief**

# Thermal Interface Materials Brief

### **Thermal Conductive Theory**

The heat of the heating element can be effectively and quickly discharged, avoiding the temperature of the heating component being too high, which may cause a decrease in working efficiency or damage.





# Thermal Conductivity K

The ratio of heat to time when the temperature difference is 1 (K or °C) through unit area and unit thickness. Thermal conductivity is a physical quantity that describes the heat transfer ability of a material. It is an inherent property of homogeneous materials and has nothing to do with the size and shape of the material.

$$K = \frac{* dx}{A*dt}$$

thickness

### Thermal Resistance R

The amount of resistance to heat transfer through an interface or a material, a property that is related to thickness and area.

R contact: thermal contact resistance



# All components that need to dissipate heat may use thermal interface materials.



New Energy Power & Charging Stations



Server



Communication base station



Notebook computer



TV Display Screen



**Mobile Terminal** 



**Medical Products** 



Solar Panel



LED

# **Product List**

Thermal Interface Materials Brief

# SC-TP

Thermal Insulation Pad

### SC-TCF

Carbon Fiber Thermal Conductive Pad

# **SC-TFC**

Thermal Conductive Phase Change Material

### SC-TS

Thermal Insulation Mud

# SC-TG

**Thermal Paste** 

**SC-TIS**Thermal Insulation Grease

### SC-TA

Thermal Conductive Wave Absorbing Material

### SC-NTP

PMMA Thermal Pad Silicone-free Oil

### SC-CH

Thermal Ceramic Heat Sink

### SC-STG/DTG

Thermal Conductive Gel

# **Precision Die - Cutting**

Graphite, Conductive Foam, Thermal Insulation Aerogel, Doublesided Tape, etc.

# **SC-TP**

### Thermal Insulation Pad

### Introduction

Thermally conductive silicone has high softness, good compressibility, strong self-adhesion and excellent filling performance.

### **Property**

Thermal conductivity of 1.5-15.0 W/m-k, can be dispersed on uneven surfaces, no deformation, strong self-adhesion, low thermal impedance, fireproof and good insulation

# **Application**

- Automotive lithium battery cooling device
- · LED lighting equipment
- · Power conversion equipment
- Power supply conversion equipment
- · Automotive engine control unit
- · Vibration damping application



| Product<br>Name                   | SC-TP150                | SC-TP200         | SC-TP300         | SC-TP400         | SC-TP500 | SC-TP600 | SC-TP800      | SC-TP1000     | SC-TP1200               | SC-TP1500               |
|-----------------------------------|-------------------------|------------------|------------------|------------------|----------|----------|---------------|---------------|-------------------------|-------------------------|
| Color                             | Light<br>Blue           | Off-<br>White    | Light<br>Green   | Purple           | Yellow   | Pink     | Light<br>Grey | Light<br>Grey | Light<br>Grey           | Light<br>Grey           |
| Thermal<br>Conductivity<br>W/m·K  | 1.2                     | 2.0              | 3.0              | 4.0              | 5.0      | 6.0      | 8.0           | 10.0          | 12.0                    | 15.0                    |
| Thickness<br>mm                   | 0.15 ~ 10               | 0.2 ~ 10         | 0.25 ~ 10        | 0.3 ~ 10         | 0.5 ~ 10 | 0.5 ~ 10 | 0.5 ~ 10      | 0.5 ~ 10      | 0.5 ~ 10                | 0.5 ~ 10                |
| Hardness                          | 40                      | 40               | 45               | 45               | 50       | 50       | 55            | 55            | 55                      | 55                      |
| Density<br>g/cm <sup>3</sup>      | 1.75                    | 2.5              | 2.98             | 3.1              | 3.2      | 3.26     | 3.36          | 3.3           | 3.3                     | 3.3                     |
| Breakdown<br>Voltage<br>KV (>1mm) | >6                      | >6               | >5               | >5               | >5       | >5       | >6            | >5            | >5                      | >5                      |
| Dielectric<br>Constant@<br>1Mhz   | 5.3                     | 7.0              | 7.3              | 7.5              | 7.4      | 7.9      | 7.2           | 7.0           | 7.0                     | 7.0                     |
| Volume<br>Resistivity<br>Ω·cm     | <b>10</b> <sup>12</sup> | 10 <sup>13</sup> | 10 <sup>13</sup> | 10 <sup>13</sup> | 1010     | 1012     | 1012          | 1012          | <b>10</b> <sup>12</sup> | <b>10</b> <sup>12</sup> |
| Temperature<br>Range<br>°C        | -40~150                 | -40~150          | -40~150          | -40~150          | -40~150  | -40~150  | -40~150       | -40~150       | -40~150                 | -40~150                 |
| Flame<br>Rating                   | 94V-0                   | 94V-0            | 94V-0            | 94V-0            | 94V-0    | 94V-0    | 94V-0         | 94V-0         | 94V-0                   | 94V-0                   |

# **SC-TCF**

### Carbon Fiber Thermal Conductive Pad

### Introduction

SC-TCF is a new lightweight, high-strength directional thermal pad with ultra-high thermal conductivity and ultra-low thermal resistance. By using an advanced arrangement technology, the thermal conductive filling material is evenly and vertically distributed in the matrix of high thermal conductivity molecules, which can greatly improve the heat transfer efficiency. At the same time, the low filling ratio makes the material have good mechanical properties and excellent thermal stability, and is widely used in the electronic field with high requirements for heat dissipation. This high thermal conductive filling itself is fibrous and can be designed with thermal orientation, which is the biggest difference and advantage from previous thermal conductive materials.

# **Property**

- Thermal conductivity 20~35 W/m·k
- Ultra-low thermal impedance, low filling ratio, lightweight
- Zero oil seepage, excellent reliability
- Safe and environmentally friendly, RoHS compatible
- · Corrosion resistant, anti-oxidation

# **Application**

### **Product Application:**

- · Satellites, radars
- · Large servers
- · Data processing centers
- · Signal converters
- · Mass storage devices
- · High-power devices
- · Electronic communication equipment

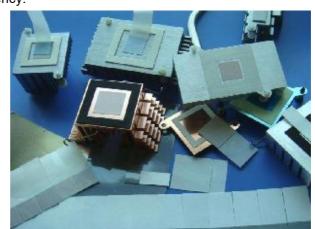


| Product Name                               | SC-TCF2000 | SC-TCF2500 | SC-TCF3000 | SC-TCF3500 |
|--------------------------------------------|------------|------------|------------|------------|
| Color                                      | Black      | Black      | Black      | Black      |
| Standard Dimensions (mm)                   | 100*100    | 100*100    | 100*100    | 100*100    |
| Thickness (mm)                             | 0.5 to 5.0 | 0.5 to 5.0 | 0.5 to 5.0 | 0.5 to 5.0 |
| Thermal Conductivity (W/m-k)               | 20.00      | 25.00      | 30.00      | 35.00      |
| Hardness (Shore00)                         | 55±5       | 55±5       | 55±5       | 55±5       |
| Density g/cm³                              | 2.5±0.2    | 2.5±0.2    | 2.5±0.2    | 2.5±0.2    |
| Breakdown Voltage<br>KV (>1mm)             | < 0.5      | < 0.5      | < 0.5      | < 0.5      |
| Flame Rating                               | V-0        | V-0        | V-0        | V-0        |
| Temperature Range °C                       | -40 to 150 | -40 to 150 | -40 to 150 | -40 to 150 |
| Thermal Resistance<br>@50psi@1mm(°C-cm2/W) | ≤0.11      | ≤0.11      | ≤0.11      | ≤0.11      |

# SC-TFC

# Thermal Conductive Phase Change Material

### Introduction


Thermally conductive phase change materials are often used to fill the gaps between high-efficiency processors and heat dissipation modules to provide extremely low thermal resistance. This material undergoes a phase change at 50-52°C, has a certain fluidity but does not overflow, can fully fill gaps, thoroughly wet the contact surface, and improve the heat transfer capacity between the heating part and the heat dissipation part. Thermally conductive pads have inherent adhesive properties, do not require an adhesive layer, and cover the microscopic uneven surface so that the mating parts are fully in contact and improve the heat transfer efficiency.

# **Property**

- · Very low thermal resistance
- · High adhesive surface for easy use
- RoHS compliant

### **Application**

- · Desktops, laptops and servers
- Microprocessors
- · Chips and chipsets
- · NB cooling modules
- Graphics cards
- · Storage modules



| Color                                | Pink                  | Yellow                | Grey                  | Grey                  | Grey                  | Grey                  |
|--------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Thermal Conductivity<br>W/m·K        | 1.0±0.3               | 2.0±0.3               | 3.0±0.3               | 5.0±0.3               | 6.0±0.3               | 8.0±0.3               |
| Thickness mm                         | 0.1 ~ 1.0             | 0.1 ~ 1.0             | 0.1 ~ 1.0             | 0.1 ~ 0.5             | 0.1 ~ 0.5             | 0.1 ~ 0.5             |
| Change Temperature °C                | 55 ~ 60               | 55 ~ 60               | 45 ~ 55               | 45 ~ 55               | 45 ~ 55               | 45                    |
| Density g/cm                         | 2.3                   | 2.7                   | 3.15                  | 2.8                   | 2.8                   | 2.8                   |
| Thermal Impedance<br>50psi(°C-cm2/W) | <0.22                 | <0.18                 | <0.14                 | < 0.07                | < 0.06                | < 0.05                |
| Dielectric Coefficient<br>MHz        | 3.1                   | 3.1                   | 3.1                   | 3.1                   | 3.1                   | 3.1                   |
| Volume Resistivity<br>Ω·cm           | 4.0x 10 <sup>13</sup> | 4.0x 10 <sup>13</sup> | 4.0x 10 <sup>13</sup> | 2.0x 10 <sup>13</sup> | 2.0x 10 <sup>13</sup> | 2.0x 10 <sup>13</sup> |
| Temperature Range<br>°C              | -20~120               | -20~120               | -20~120               | -20~120               | -20~120               | -20~150               |

# Thermal Insulation Mud

### Introduction

As a medium for transferring heat, FG thermal conductive mud has excellent thermal conductivity, good lubricity and electrical insulation, as well as good resistance to high and low temperatures. It has low viscosity and good construction performance. This product is based on polysiloxane and supplemented with high thermal conductive fillers. It is non-toxic, odorless and non-corrosive. It complies with R O H S directives and related environmental protection requirements, and has stable chemical and physical properties.

### **Property**

- · Strong plasticity, easy to use
- Thoroughly wet the contact surface to improve heat dissipation effect
- Safe and environmentally friendly, RoHS compliant

# **Application**

- Computer processors CPUs
- Chips and chipsets Power supplies and UPS
- Graphics cards LCD and PDP Flat panel displays
- · Massive storage devices
- Computer cooling fans



1 kg/can, 2 kg/can, 10 kg/drum; 30 cc syringe. Store in a cool and dry place. Shelf life 12 months.



| Color                          | Off-White             | Off-White             | Off-White             |
|--------------------------------|-----------------------|-----------------------|-----------------------|
| Thermal Conductivity W/m·K     | 1.0±0.3               | 2.0±0.3               | 3.0±0.3               |
| Density g/cm                   | 1.75                  | 2.3                   | 2.98                  |
| Breakdown Voltage<br>KV (>1mm) | 4                     | 4                     | 4                     |
| Volume Resistivity<br>Ω·cm     | 4.0x 10 <sup>13</sup> | 4.0x 10 <sup>13</sup> | 4.0x 10 <sup>13</sup> |
| Temperature Range              | -40~150               | -40~150               | -40~150               |
| Flame Rating                   | 94V-0                 | 94V-0                 | 94V-0                 |
| Packaging                      | Filling               | Filling               | Filling               |

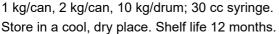
# SC-TG

### Thermal Paste

### Introduction

As a medium for transferring heat, TG thermal paste has excellent thermal conductivity, good lubricity and electrical insulation, as well as good high and low temperature resistance; it has low viscosity and good construction performance. This product is based on polysiloxane and supplemented with high thermal conductivity fillers. It is non-toxic, odorless and non-corrosive, complies with the R O H S directive and related environmental protection requirements, and has stable chemical and physical properties.

# **Property**


- Thermal conductivity 1.0~6.0 W/m·k
- Extremely low thermal resistance, better heat transfer
- Thoroughly wet the contact surface to improve heat dissipation effect
- Safe and environmentally friendly, RoHS compliant

### Application

- Computer processors CPUs
- Chips and chipsets
- Power supplies and UPS
- Graphics cards
- LCD and PDP flat panel displays
- Massive storage devices
- Computer cooling fans

### **Product Configuration & Storage**

1 kg/can, 2 kg/can, 10 kg/drum; 30 cc syringe.





| Color                                | White   | Off-White | Grey    | Grey    | Grey    | Grey    |
|--------------------------------------|---------|-----------|---------|---------|---------|---------|
| Thermal Conductivity                 | 1.0±0.3 | 2.0±0.3   | 3.0±0.3 | 4.0±0.3 | 5.0±0.3 | 6.0±0.3 |
| Evaporation                          | <0.001  | <0.001    | <0.001  | <0.001  | <0.001  | <0.001  |
| Density g/cm                         | 2.2     | 2.5       | 2.78    | 3.15    | 3.15    | 3.15    |
| Thermal Impedance<br>50psi(°C-cm2/W) | 0.256   | 0.212     | 0.221   | 0.256   | 0.08    | 0.08    |
| Breakdown Voltage<br>KV (>1mm)       | 5       | 5         | 5       | 5       | 5       | 5       |
| Temperature Range<br>°C              | -40~150 | -40~150   | -40~150 | -40~150 | -40~150 | -40~150 |

# **SC-TIS**

### Thermal Insulation Grease

### Introduction

TIS is a two-component, high thermal conductivity, room temperature curable, long working time, fire retardant silicone potting compound. It is particularly suitable for potting capacitors and small electronic devices. Its flexibility and elasticity enable it to provide a buffer for the coated material. The lower viscosity allows the thermally conductive potting compound to more fully cover the surface during the period, greatly improving the efficiency of heat conduction from the heating device or the entire PCB to the metal housing or diffusion plate, thereby improving the efficiency and service life of electronic components.

### **Property**

- Good insulation
- Low viscosity, conducive to gas discharge
- Good solvent resistance and waterproof performance
- · Excellent high and low temperature resistance

### **Application**

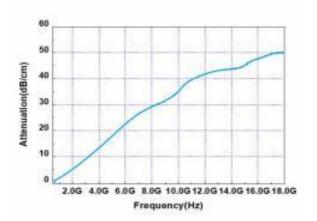
- Power supply, connector, sensor, industrial control, transformer, coil, amplifier, high voltage package, relay, high current junction box, etc.
- Assembly of heat sink, potting of thermal sensor, potting of thermal conductive products
- Heat conduction between battery cell and cooling tube
- · LED and power driver potting

| Product name                   | SC-TIS15AB              | SC-TIS20AB       | SC-TIS30AB              | SC-TIS40AB       |
|--------------------------------|-------------------------|------------------|-------------------------|------------------|
| Color                          | White                   | White            | White                   | White            |
| Thermal Conductivity W/m·K     | 1.2                     | 2.0              | 3.0                     | 4.0              |
| Thickness mm                   | 0.15 ~ 5                | 0.2 ~ 5          | 0.25 ~ 5                | 0.3 ~ 5          |
| Hardness Shore A               | 40                      | 40               | 50                      | 50               |
| Density g/cm <sup>3</sup>      | 1.75                    | 2.5              | 2.98                    | 3.1              |
| Breakdown Voltage<br>KV (>1mm) | >6                      | >6               | >5                      | >5               |
| Dielectric Constant<br>@1Mhz   | 5.3                     | 7.0              | 7.3                     | 7.5              |
| Volume Resistivity Ω·cm        | <b>10</b> <sup>12</sup> | 10 <sup>13</sup> | <b>10</b> <sup>13</sup> | 10 <sup>13</sup> |
| Temperature Range °C           | -40~150                 | -40~150          | -40~150                 | -40~150          |
| Flame Rating                   | 94V-0                   | 94V-0            | 94V-0                   | 94V-0            |

## SC-TA

### Thermal Conductive Wave Absorbing Material

### Introduction


SC-TAxxx thermal conductive absorber patches have good thermal conductivity, can absorb electromagnetic waves, have shielding effect and insulation withstand voltage characteristics. Low interface thermal resistance can be achieved at relatively low pressure. Air can be effectively excluded to achieve a good filling effect. It can be directly applied between the heat sink and the metal shell to effectively export heat energy. At the same time, it has electromagnetic shielding and electromagnetic clutter absorption performance, providing a good solution for electronic products in thermal conductivity and electromagnetic shielding.

### **Property**

- · High thermal conductivity, low thermal resistance
- Good insulation and withstand voltage characteristics
- Excellent electromagnetic wave attenuation ability, good surface compatibility
- Good resilience, good self-adhesion
- · High long-term reliability

# **Application**

- 5G base stations
- UAV/drone
- · Optical modules, amplifiers
- Laptops, routers, TVs
- Medical equipment, electronic diagnostic instruments



| Characteristics      | SC-TA300  | Unit     | Test Method  |
|----------------------|-----------|----------|--------------|
| Color                | Dark Grey | 1        | Visual       |
| Thickness            | 0.5~3.0   | mm       | ASTM D374    |
| Hardness             | 50        | Shore 00 | ASTM D2240   |
| Density              | 3.1       | g/cm³    | ASTM D792    |
| Temperature Range    | -45~150   | ဇ        | N/A          |
| Attenuation Rate     | 30        | dB/cm    | @8Ghz        |
| Atteriuation Rate    | 45        | dB/cm    | @15Ghz       |
| Breakdown Voltage    | >6        | kv       | ASTM D149    |
| Surface Resistance   | 1010      | Ω        | ASTM D2574   |
| Thermal Conductivity | 3.0       | W/mk     | ASTM C518-98 |

# **SC-NTP**

### PMMA Thermal Pad Silicone-free oil

### Introduction

NTP non-silicone thermal pads are acrylic materials with excellent properties of strong self-adhesion, no oil leakage and corrosion resistance. Different from conventional thermal pads, non-silicone thermal pads have excellent mechanical strength, toughness and wear resistance. They are suitable for use in special environments such as high-voltage and high-impact lithium batteries. In the use of lithium batteries, non-silicone thermal pads can effectively prevent the dissolution of electrolytes, so they are widely used in the lithium battery industry.

# **Property**

- No oily stains, avoid oil pollution
- Unique properties of acrylic acid, strong adhesion, no need for adhesive
- Safe and environmentally friendly, RoHS compliant



- Computer processors CPUs
- Chips and chipsets
- Power supplies and UPS
- Graphics cards
- LCD and PDP flat panel displays
- Massive storage devices
- Computer cooling fans



| Product name                    | SC-NTP150               | SC-NTP200        | SC-NTP300        | SC-NTP400        | SC-NTP500        | SC-NTP600 |
|---------------------------------|-------------------------|------------------|------------------|------------------|------------------|-----------|
| Color                           | White                   | White            | White            | White            | White            | White     |
| Thermal<br>ConductivityW/m·K    | 1.2                     | 2.0              | 3.0              | 4.0              | 5.0              | 6.0       |
| Thickness mm                    | 0.15 ~ 5                | 0.2 ~ 5          | 0.25 ~ 5         | 0.3 ~ 5          | 0.5 ~ 5          | 0.5 ~ 5   |
| Hardness Shore00                | 65                      | 65               | 65               | 65               | 65               | 65        |
| Density g/cm³                   | 1.75                    | 2.5              | 2.98             | 3.1              | 3.2              | 3.26      |
| Breakdown<br>Voltage KV (>1mm)  | >6                      | >6               | >5               | >5               | >5               | >5        |
| Dielectric Constant<br>@1Mhz    | 5.3                     | 7.0              | 7.3              | 7.5              | 7.4              | 7.9       |
| Volume Resistivity $\Omega$ ·cm | <b>10</b> <sup>12</sup> | 10 <sup>13</sup> | 10 <sup>13</sup> | 10 <sup>13</sup> | 10 <sup>10</sup> | 1012      |
| Temperature<br>Range °C         | -40~150                 | -40~150          | -40~150          | -40~150          | -40~150          | -40~1     |
| Flame<br>Retardant<br>Grade     | 94V-0                   | 94V-0            | 94V-0            | 94V-0            | 94V-0            | 94V-0     |

### SC-CH

### Thermal Ceramic Heatsink

### Introduction

H.SAC ceramic material has the characteristics of good insulation, high thermal conductivity, high infrared radiation rate and low expansion coefficient. It can become a new material for heat dissipation of LED lighting and network communication products.

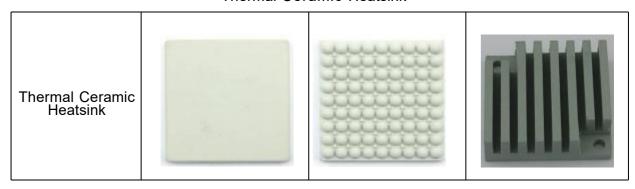
H.SAC can withstand large current, high voltage, leakage breakdown, no noise, and will not produce coupling parasitic capacitance with MOS and other power tubes, thus simplifying the filtering process; the required creepage distance is shorter than that required by the financial body, which further saves board space and is more conducive to engineers' design and electrical certification; H.SAC has multi-directional heat dissipation and is suitable for IC packaging with multi-directional heat dissipation; H.SAC material is small in size, light in weight, does not occupy space, and is more conducive to the

reasonable layout of product design;

H.SAC has good heat dissipation and heat transfer performance, which can effectively solve the heat dissipation problem of electronic products and power components and extend the service life of products.

### **Property**

As a green and environmentally friendly material, the product is mainly used in LED lighting and related electronic industries. H.SAC ceramic products can effectively solve the thermal conductivity and heat dissipation problems in the electronics and optoelectronics industries, and provide technical support and breakthroughs for the innovation and development of electronic products.


### Application

- Components: ICs, chipsets, CPU, MOS, SouthBridge
- LED: General (commercial) lighting heat sink
- TV: Thin LCD TV/Set-top box
- Network equipment: AP, Route, ADSL, Modern, S/W
- Information technology: M/B, NB, Video, Card
- Memory: DDR3-DIMM, SO-DIMM, SSD
- Power supply: Power module, Power transistor

### Size

Product size: Various shapes

# SC-CH Thermal Ceramic Heatsink



# SC-CH

# Thermal Ceramic Heatsink

|                           | Spec Items               | Unit              | Data                                     | Test                                    |
|---------------------------|--------------------------|-------------------|------------------------------------------|-----------------------------------------|
| Physical                  | Density S.G.             | g/cm <sup>3</sup> | 2.0 ±0.05                                | GB/T 3810.3-2006                        |
| Properties                | Porosity                 | %                 | 30                                       | GB/T 3810.3-2006                        |
|                           | Mohs Hardness            | Mohs              | 5~6                                      | DIN EN101-1992                          |
| Mechanical                | Flexural Strength        | MPa               | 87.82                                    | GB/T 14389-14390                        |
| Properties                | Thermal Conductivity     | w/m-k             | >9                                       | HOT DISK                                |
|                           | Max. Operating Temp.     | ဇ                 | < 700                                    |                                         |
| Chemical<br>Composition   | SiC                      | Purity            | >99%                                     |                                         |
|                           | Dielectric Strength (DC) | Voltage           | 6.96kV/mm                                | IEC 60243-2:2001 SGS                    |
| Various                   | Dielectric Strength (AC) | Voltage           | 4.87kV/mm                                | ASTM D149-09<br>Method A / SGS          |
| various<br>certifications | RoHS                     |                   | PASS<br>(Report No. :<br>GC130301375-GZ) | SGS                                     |
|                           | Drop Test                |                   | PASS<br>(Report No. :<br>GZRL2012081591) | Drop high 700mm<br>on 30×30mm PCB / SGS |

# SC-STG/DTG

### Thermal Conductive Gel

### Introduction

- SC-STG/DTG series thermal conductive gel is a paste-like gap-filling thermal conductive material. It is formed according to the shape of the structure; for uneven ceramic, radiator surface or irregular cavity, it has the best structural applicability and surface conformity of structural parts, and the gap is fully filled
- SC-STG/DTG series thermal conductive gel has good insulation and voltage resistance and thermal stability, and is safe and reliable to use
- SC-STG/DTG series thermal conductive gel can flow under pressure like silicone grease; it has high reliability under the action of thermal cycle and will not solidify

# **Property**

- Single component use
- · No curing, high reliability
- Good application effect in irregular structure gaps
- Good electrical insulation, meeting the needs of electronic devices
- · Good mechanical properties and weather resistance

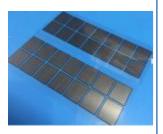
# **Application**

- · Communication equipment
- Storage equipment
- Mobile phones, smart watches
- · Security equipment
- Network terminal
- LED lamps
- Power supply device



| One-Component Thermally Conductive Gel(SC-STG)Performance               |                                                                     |                     |                     |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|---------------------|--|--|--|
| Product Name                                                            | SC-STG400                                                           | SC-STG600           | SC-STG800           |  |  |  |
| Color                                                                   | Vermillion                                                          | Yellow              | Yellow              |  |  |  |
| Thermal Conductivity (W/m·K)                                            | 4.0±0.3                                                             | 6.0±0.3             | 8.0±0.3             |  |  |  |
| Density (g/cm³)                                                         | 3.0                                                                 | 3.2                 | 3.3                 |  |  |  |
| Extrusion Volume (g/min) 2.54mm syringe head, 90psi pressure (30cc can) | 30±5                                                                | 20±5                | 20±5                |  |  |  |
| Breakdown Strength (kV/mm)                                              | >5                                                                  | >5                  | >5                  |  |  |  |
| Volume Resistivity (Ω ·cm)                                              | 9.5x 10 <sup>13</sup>                                               | 4x 10 <sup>13</sup> | 4x 10 <sup>13</sup> |  |  |  |
| Operating Temperature (F/°C)                                            | -40~150                                                             | -40~150             | -40~150             |  |  |  |
| Shipping Method                                                         | Syringe packaging (or canning) volume: 30cc/pc, 300cc/pc, 2600cc/pc |                     |                     |  |  |  |
| Shelf Life (@25±5°C, 70%RH)                                             | 6 months                                                            |                     |                     |  |  |  |

| Two-Component Thermal Conductive Gel (SC-DTG) Performance |               |         |                      |         |  |  |  |
|-----------------------------------------------------------|---------------|---------|----------------------|---------|--|--|--|
|                                                           | SC-DTG18      | 30      | SC-DTG35             | 0       |  |  |  |
| Pre-mixing Performance                                    | A Group       | B Group | A Group              | B Group |  |  |  |
| Color                                                     | White         | Yellow  | White                | Yellow  |  |  |  |
| Viscosity (mPa• s)                                        | 250*10³       | 250*10³ | 200*103              | 200*103 |  |  |  |
| Density (g/cm³)                                           | 2.65          | 2.65    | 2.75                 | 2.75    |  |  |  |
| Mixing Ratio                                              | 1:1           |         | 1:1                  |         |  |  |  |
| Post-mixing Performance                                   |               |         |                      |         |  |  |  |
| Color                                                     | Yellow        |         | Yellow               |         |  |  |  |
| Hardness (Shore OO)                                       | 60(1:1after ( | curing) | 60(1:1 after curing) |         |  |  |  |
| Thermal Conductivity (W/mK)                               | 1.8           |         | 3.5                  |         |  |  |  |
| Breakdown Strength (KV/mm)                                | >5            |         | >5                   |         |  |  |  |
| Flame Retardant Grade                                     | UL94 V-0      |         | UL94 V-0             |         |  |  |  |
| Operating Temperature (°C)                                |               |         |                      |         |  |  |  |
| Full Curing Time                                          |               |         |                      |         |  |  |  |
| 25℃ (H)                                                   |               |         | 45                   |         |  |  |  |
| 25 5 (11)                                                 | 5             |         | 15                   |         |  |  |  |
| 100°C (min)                                               | 15            |         | 40                   |         |  |  |  |


# **Precision Die - Cutting**




Professional small hole combination die cutting line, products that meet multiple punching requirements

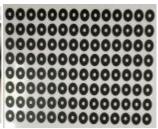


CNC proofing machine, no need to make molds, saving mold costs for customers



Graphite double edge die cutting




Graphite foam die cutting



Copper foil and aluminum foil die cutting

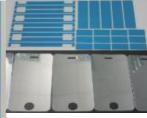


Thermal pad die cutting



PC gasket die cutting




Insulation material die cutting

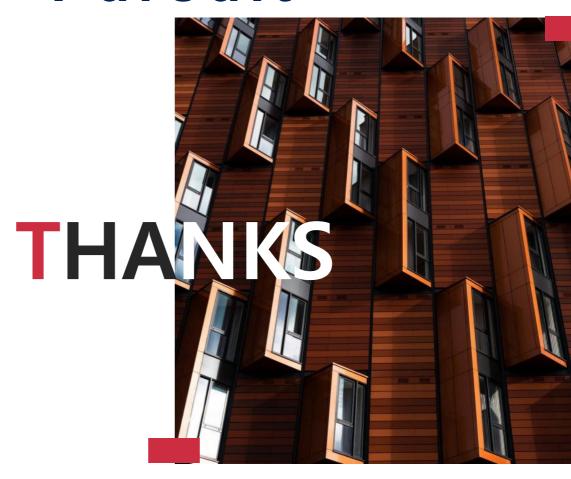


Double-sided adhesive die cutting



Camera backing adhesive die cutting




Protective film die cutting



Conductive foam



# Your Success is our Pursuit



SPEED SPREAD
Electronic Materials Co., Ltd.